Введение в теорию программирования. Функциональный подход



   Roulette no download play poker craps no deposit casino - free online games freeslots.            

Функциональный подход к программированию - часть 2


Таким образом, повторное использование кода сводится к вызову ранее описанной функции, структура которой, в отличие от процедуры императивного языка, математически прозрачна.

Поскольку функция является естественным формализмом для языков функционального программирования, реализация различных аспектов программирования, связанных с функциями, существенно упрощается. Интуитивно прозрачным становится написание рекурсивных функций, т.е. функций, вызывающих самих себя в качестве аргумента. Естественной становится и реализация обработки рекурсивных структур данных.

Благодаря реализации механизма сопоставления с образцом, такие языки функционального программирования как ML и Haskell хорошо использовать для символьной обработки.

Естественно, языки функционального программирования не лишены и некоторых недостатков.

Часто к ним относят нелинейную структуру программы и относительно невысокую эффективность реализации. Однако первый недостаток достаточно субъективен, а второй успешно преодолен современными реализациями, в частности, рядом последних трансляторов языка SML, включая и компилятор для среды Microsoft .NET.

Для профессиональной разработки программного обеспечения на языках функционального программирования необходимо глубоко понимать природу функции. Исследованию закономерностей и особенностей природы функции в основном и посвящены лекции 2 – 12 данного курса.

Заметим, что под термином "функция" в математической формализации и программной реализации имеются в виду различные понятия.

Так, математической функцией f с областью определения A и областью значений B называется множество упорядоченных пар

(a,b)

A ? B,

таких, что если

(a,b1)

f и (a,b2)
f,

то

b1 = b2.

В свою очередь, функцией в языке программирования называется конструкция этого языка, описывающая правила преобразования аргумента (так называемого фактического параметра) в результат.

Для формализации понятия "функция" была построена математическая теория, известная под названием ламбда-исчисления.


Содержание  Назад  Вперед